Working with the following topics:

  • Pandas, Numpy (basic Libraries)
  • Standard Scaler, MinMax Scaler, Robust Scaler, OneHot Encoder, LabelEncoder, PCA (Data Pre Processing)
  • Apriori Algorithm (Association Rule Mining)
  • Matplotlib, Seaborn (Data Visualization)
  • K-Means, Agglomerative Clustering, DBSCAN (Clustering)
  • K-Nearest Neighbors Algorithm (Classifier)
  • Decision Tree, Support Vector Machines, Multi-Layer Perceptron (Machine Learning)
AI logo
DTM logo

Repository:

GitHub link

Basic Libraries:

Intro to Python

Standard Scaler, MinMax Scaler, Robust Scaler, OneHot Encoder, LabelEncoder, PCA:

Data Pre Processing

Apriori Algorithm:

Apriori Algorithm

Data Visualization:

Matplotlib, Seaborn

K-Means, Agglomerative Clustering, DBSCAN:

Clustering

K-Nearest Neighbors Algorithm:

Classifier

Decision Tree, Support Vector Machines, Multi-Layer Perceptron:

Machine Learning

Updated: